Inclusions on fluid membranes anchored to elastic media.

نویسندگان

  • M S Turner
  • P Sens
چکیده

We model theoretically the effect of localized forces on a fluid membrane anchored to a uniform elastic medium. We use this as a simple model for the plasma membrane of a cell. The atomic force microscope (AFM) has been used to apply such forces, but large membrane perturbations occurring in vivo are also treated within the same framework. Inclusions of this nature may include cell junctions, filipodia, caveolae, and similar membrane invaginations. The breakdown of linear elastic response, as observed by AFM, is predicted to occur for forces as small as 10 pN. We estimate the position of this crossover and the subsequent nonlinear behavior and make encouraging quantitative comparison with experiments. Intrinsic membrane inclusions interact through their overlapping strain fields. For similar, point force-like inclusions at large separations, this yields an attractive potential that scales like the inverse of their separation. For membranes that are intrinsically stiff or under tension, the binding force between inclusions can depend on the properties of the membrane and may be large enough to induce aggregation of inclusions, as observed experimentally. For inclusions that fix the magnitude of the membrane deformation, rather than the applied force, we demonstrate the possibility of metastable states, corresponding to finite separations. Finally, we discuss briefly the case in which inclusions couple to the membrane in more complex ways, such as via a torque (twist). In such cases, the interaction scales like a higher power of the separation, depends on the orientation of the inclusions, and can have either sign.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-plane dynamics of membranes with immobile inclusions.

Cell membranes are anchored to the cytoskeleton via immobile inclusions. We investigate the effect of such anchors on the in-plane dynamics of a fluid membrane and mobile inclusions (proteins) embedded in it. The immobile particles lead to a decreased diffusion coefficient of mobile ones and suppress the correlated diffusion of particle pairs. Because of the long-range, quasi-two-dimensional na...

متن کامل

Fluid transport by active elastic membranes.

A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is int...

متن کامل

N-body Study of Anisotropic Membrane Inclusions: Membrane Mediated Interactions and Ordered Aggregation

We study the collective behavior of inclusions inducing local anisotropic curvatures in a flexible fluid membrane. The N-body interaction energy for general anisotropic inclusions is calculated explicitly, including multi-body interactions. Long-range attractive interactions between inclusions are found to be sufficiently strong to induce aggregation. Monte Carlo simulations show a transition f...

متن کامل

Dynamic phase separation of fluid membranes with rigid inclusions.

Membrane shape fluctuations induce attractive interactions between rigid inclusions. Previous analytical studies showed that the fluctuation-induced pair interactions are rather small compared to thermal energies, but also that multibody interactions cannot be neglected. In this paper, it is shown numerically that shape fluctuations indeed lead to the dynamic separation of the membrane into pha...

متن کامل

Exactly realizable bounds on the trapping constant and permeability of porous media

Sandstone, granular media, bone, wood, and cell membranes are just a few examples of porous media that abound in Nature and in synthetic situations. Two important effective properties of fluid-saturated porous media that have been extensively studied are the trapping constant g and scalar fluid permeability k. Exact expressions for the “void” bounds on g and k for coated-spheres and coated-cyli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 76 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1999